/* tulip.c: A DEC 21040 ethernet driver for linux. */ /* NOTICE: this version works with kernels 1.1.82 and later only! Written 1994,1995 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. This driver is for the SMC EtherPower PCI ethernet adapter. It should work with most other DEC 21*40-based ethercards. The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O Center of Excellence in Space Data and Information Sciences Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771 */ static char *version = "tulip.c:v0.10 8/11/95 becker@cesdis.gsfc.nasa.gov\n" " +0.71 4/14/96 " "http://www.dsl.tutics.tut.ac.jp/~linux/tulip.html\n"; /* A few user-configurable values. */ /* Default to using 10baseT (i.e. AUI/10base2/100baseT port) port. */ #define TULIP_10TP_PORT 0 #define TULIP_100TP_PORT 1 #define TULIP_AUI_PORT 1 #define TULIP_BNC_PORT 2 #define TULIP_MAX_PORT 3 #define TULIP_AUTO_PORT -1 #ifndef TULIP_PORT #define TULIP_PORT TULIP_10TP_PORT #endif /* Define to force full-duplex operation on all Tulip interfaces. */ /* #define TULIP_FULL_DUPLEX 1 */ /* Define to fix port. */ /* #define TULIP_FIX_PORT 1 */ /* Define to probe only first detected device */ /*#define TULIP_MAX_CARDS 1 */ #include #include #if LINUX_VERSION_CODE < 0x10300 /* i.e. version 1.2.x */ #define virt_to_bus(address) (unsigned long)(address) #define bus_to_virt(address) (void *)(address) #define PCI_DEVICE_ID_DEC_TULIP_PLUS 0x0014 #ifdef MODULE #include char kernel_version[] = UTS_RELEASE; #else #undef MOD_INC_USE_COUNT #undef MOD_DEC_USE_COUNT #define MOD_INC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #else /* i.e. version 1.3.x */ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The total size is unusually large: The 21040 aligns each of its 16 longword-wide registers on a quadword boundary. */ #define TULIP_TOTAL_SIZE 0x80 /* Theory of Operation I. Board Compatibility This device driver is designed for the DECchip 21040 "Tulip", Digital's single-chip ethernet controller for PCI, as used on the SMC EtherPower ethernet adapter. It also works with boards based the 21041 (new/experimental) and 21140 (10/100mbps). II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS should be set to assign the PCI INTA signal to an otherwise unused system IRQ line. While it's physically possible to shared PCI interrupt lines, the kernel doesn't support it. III. Driver operation IIIa. Ring buffers The Tulip can use either ring buffers or lists of Tx and Rx descriptors. The current driver uses a statically allocated Rx ring of descriptors and buffers, and a list of the Tx buffers. IIIC. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'tp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so we can't avoid the interrupt overhead by having the Tx routine reap the Tx stats.) After reaping the stats, it marks the queue entry as empty by setting the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes Thanks to Duke Kamstra of SMC for providing an EtherPower board. The DEC databook doesn't document which Rx filter settings accept broadcast packets. Nor does it document how to configure the part to configure the serial subsystem for normal (vs. loopback) operation or how to have it autoswitch between internal 10baseT, SIA and AUI transceivers. The databook claims that CSR13, CSR14, and CSR15 should each be the last register of the set CSR12-15 written. Hmmm, now how is that possible? */ /* A few values that may be tweaked. */ /* Keep the ring sizes a power of two for efficiency. */ #define TX_RING_SIZE 4 #define RX_RING_SIZE 4 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ /* This is a mysterious value that can be written to CSR11 in the 21040 to detect a full-duplex frame. No one knows what it should be, but if left at its default value some 10base2(!) packets trigger a full-duplex-request interrupt. */ #define FULL_DUPLEX_MAGIC 0x6969 /* The rest of these values should never change. */ #define PCI_DEVICE_ID_NONE 0xFFFF #define ETHNAMSIZ 8 #define ROUND_UP(size, n) ((size + n - 1) & ~(n - 1)) /* Offsets to the Command and Status Registers, "CSRs". All accesses must be longword instructions and quadword aligned. */ enum tulip_offsets { /* 21040 21041 21140 */ CSR0 = 0, /* BUS mode */ CSR1 = 0x08, /* TX poll demand */ CSR2 = 0x10, /* RX poll demand */ CSR3 = 0x18, /* RX ring base addr */ CSR4 = 0x20, /* TX ring base addr */ CSR5 = 0x28, /* Status */ CSR6 = 0x30, /* Command mode */ CSR7 = 0x38, /* Interrupt Mask */ CSR8 = 0x40, /* Missed frame counter */ CSR9 = 0x48, /* Eth.addrROM SROM mii SROM mii */ CSR10 = 0x50, /* Diagn. boot ROM - */ CSR11 = 0x58, /* Full duplex G.P. timer G.P. timer */ CSR12 = 0x60, /* SIA status G.P. */ CSR13 = 0x68, /* SIA connectivity - */ CSR14 = 0x70, /* SIA TX/RX - */ CSR15 = 0x78 /* SIA general watchdog */ }; /* description of CSR0 bus mode register */ #define TBMOD_RESERVED 0xfff80000 /* I don't know */ #define TBMOD_RESET 0x00000001 #define TBMOD_BIGENDIAN 0x00000080 /* Cache alignment bits 15:14 Burst length 13:8 0000 No alignment 0x00000000 unlimited 0800 8 longwords 4000 8 longwords 0100 1 longword 1000 16 longwords 8000 16 longwords 0200 2 longwords 2000 32 longwords C000 32 longwords 0400 4 longwords */ #define TBMOD_ALIGN0 0x00000000 /* no cache alignment */ #define TBMOD_ALIGN8 0x00004000 /* 8 longwords */ #define TBMOD_ALIGN16 0x00008000 #define TBMOD_ALIGN32 (TBMOD_ALIGN8|TBMOD_ALIGN16) #define TBMOD_BURST0 0x00000000 /* unlimited=rx buffer size */ #define TBMOD_BURST1 0x00000100 /* 1 longwords */ #define TBMOD_BURST2 0x00000200 #define TBMOD_BURST4 0x00000400 #define TBMOD_BURST8 0x00000800 #define TBMOD_BURST16 0x00001000 #define TBMOD_BURST32 0x00002000 /* description of CSR1 Tx poll demand register */ /* description of CSR2 Rx poll demand register */ #define TPOLL_START 0x00000001 /* ? */ #define TPOLL_TRIGGER 0x00000000 /* ? */ /* description of CSR5 status register from de4x5.h */ #define TSTAT_BUSERROR 0x03800000 #define TSTAT_SYSERROR 0x00002000 #define TSTAT_TxSTAT 0x00700000 #define TSTAT_RxSTAT 0x000e0000 #define TSTAT_LKFAIL 0x00001000 #define TSTAT_NORINTR 0x00010000 /* Normal interrupt */ #define TSTAT_ABNINTR 0x00008000 /* Abnormal interrupt */ #define TSTAT_RxMISSED 0x00000100 /* Rx frame missed */ #define TSTAT_RxUNABL 0x00000080 #define TSTAT_RxINTR 0x00000040 #define TSTAT_LKPASS 0x00000010 #define TSTAT_TEXPIRED 0x00000800 /* Timer Expired */ #define TSTAT_TxTOUT 0x00000008 #define TSTAT_TxUNABL 0x00000004 #define TSTAT_TxINTR 0x00000001 #define TSTAT_CLEARINTR 0x0001ffff /* clear all interrupt sources */ /* description of CSR6 command mode register */ #define TCMOD_SCRM 0x01000000 /* scrambler mode */ #define TCMOD_PCS 0x00800000 /* PCS function */ #define TCMOD_TxTHMODE 0x00400000 /* Tx threshold mode */ #define TCMOD_SW100TP 0x00040000 /* 21140: 100MB */ #define TCMOD_CAPTURE 0x00020000 /* capture effect */ #define TCMOD_FULLDUPLEX 0x00000200 #define TCMOD_TH128 0x00008000 /* 10 - 128 bytes threshold */ #define TCMOD_TxSTART 0x00002000 #define TCMOD_RxSTART 0x00000002 #define TCMOD_ALLMCAST 0x00000080 /* pass all multicast */ #define TCMOD_PROMISC 0x00000040 /* promisc */ #define TCMOD_BOFFCOUNTER 0x00000020 /* backoff counter */ #define TCMOD_INVFILTER 0x00000010 /* invert filtering */ #define TCMOD_HONLYFILTER 0x00000004 /* hash only filtering */ #define TCMOD_HPFILTER 0x00000001 /* hash/perfect Rx filtering */ #define TCMOD_MODEMASK (TCMOD_ALLMCAST|TCMOD_PROMISC) #define TCMOD_FILTERMASK (TCMOD_HONLYFILTER|TCMOD_HPFILTER|TCMOD_INVFILTER) #define TCMOD_TRxSTART (TCMOD_TxSTART|TCMOD_RxSTART) #define TCMOD_BASE (TCMOD_CAPTURE|TCMOD_BOFFCOUNTER) #define TCMOD_10TP (TCMOD_TxTHMODE|TCMOD_BASE) #define TCMOD_100TP (TCMOD_SCRM|TCMOD_PCS|TCMOD_SW100TP|TCMOD_BASE) #define TCMOD_AUTO (TCMOD_SW100TP|TCMOD_TH128|TCMOD_10TP) /* description of CSR7 interrupt mask register */ #define TINTR_ENABLE 0xFFFFFFFF #define TINTR_DISABLE 0x00000000 /* description of CSR11 G.P. timer (21041/21140) register */ #define TGEPT_COUNT 0x0001FFFF /* description of CSR12 SIA status(2104x)/GP(21140) register */ #define TSIAS_CONERROR 0x00000002 /* connection error */ #define TSIAS_LNKERROR 0x00000004 /* link error */ #define TSIAS_ACTERROR 0x00000200 /* port Rx activity */ #define TSIAS_RxACTIVE 0x00000100 /* port Rx activity */ #define TGEPR_LK10NG 0x00000080 /* 10Mbps N.G. (R) */ #define TGEPR_LK100NG 0x00000040 /* 100Mbps N.G. (R) */ #define TGEPR_DETECT 0x00000020 /* detect signal (R) */ #define TGEPR_HALFDUPLEX 0x00000008 /* half duplex (W) */ #define TGEPR_PHYLOOPBACK 0x00000004 /* PHY loopback (W) */ #define TGEPR_FORCEALED 0x00000002 /* force activity LED on (W) */ #define TGEPR_FORCE100 0x00000001 /* force 100Mbps mode */ /* description of CSR13 SIA connectivity register */ #define TSIAC_OUTEN 0x0000e000 /* 21041: Output enable */ #define TSIAC_SELED 0x00000f00 /* 21041: AUI or TP with LEDs */ #define TSIAC_INEN 0x00001000 /* 21041: Input enable */ #define TSIAC_NO10TP 0x00000008 /* 10baseT(0) or not(1) */ #define TSIAC_CONFIG 0x00000004 /* Configuration */ #define TSIAC_SWRESET 0x00000001 /* 21041: software reset */ #define TSIAC_RESET 0x00000000 /* reset */ #define TSIAC_C21041 (TSIAC_OUTEN|TSIAC_SELED|TSIAC_SWRESET) #define TSIAC_C21040 TSIAC_CONFIG /* description of CSR14 SIA TX/RX register */ #define TSIAX_NO10TP 0x0000f73d #define TSIAX_10TP 0x0000ff3f /* description of CSR15 SIA general register */ #define TSIAG_SWBNCAUI 0x00000008 /* BNC(0) or AUI(1) */ #define TSIAG_BNC 0x00000006 #define TSIAG_AUI (TSIAG_BNC|TSIAG_SWBNCAUI) #define TSIAG_10TP 0x00000000 /* description of rx_ring.status */ #define TRING_OWN 0x80000000 /* Owned by chip */ #define TRING_CLEAR 0x00000000 /* clear */ #define TRING_ERROR 0x00008000 /* error summary */ #define TRING_ETxTO 0x00004000 /* Tx time out */ #define TRING_ELCOLL 0x00000200 /* late collision */ #define TRING_EFCOLL 0x00000100 /* fatal collision */ #define TRING_ELCARR 0x00000800 /* carrier lost */ #define TRING_ENCARR 0x00000400 /* no carrier */ #define TRING_ENOHB 0x00000080 /* heartbeat fail */ #define TRING_ELINK 0x00000004 /* link fail */ #define TRING_EUFLOW 0x00000002 /* underflow */ #define TRING_ELEN 0x00004000 /* length error */ #define TRING_FDESC 0x00000200 /* first descriptor */ #define TRING_LDESC 0x00000100 /* last descriptor */ #define TRING_ERUNT 0x00000800 /* runt frame */ #define TRING_ELONG 0x00000080 /* frame too long */ #define TRING_EWATCHDOG 0x00000010 /* receive watchdog */ #define TRING_EDRBIT 0x00000004 /* dribble bit */ #define TRING_ECRC 0x00000002 /* CRC error */ #define TRING_EOVERFLOW 0x00000001 /* overflow */ #define TRING_RxDESCMASK (TRING_FDESC|TRING_LDESC) #define TRING_RxLENGTH (TRING_ERUNT|TRING_ELONG|TRING_EWATCHDOG) #define TRING_RxFRAME (TRING_EDRBIT) #define TRING_RxCRC (TRING_ECRC) #define TRING_RxFIFO (TRING_EOVERFLOW) #define TRING_TxABORT (TRING_ETxTO|TRING_EFCOLL|TRING_ELINK) #define TRING_TxCARR (TRING_ELCARR|TRING_ENCARR) #define TRING_TxWINDOW (TRING_ELCOLL) #define TRING_TxFIFO (TRING_EUFLOW) #define TRING_TxHEARTBEAT (TRING_ENOHB) /* The Tulip Rx and Tx buffer descriptors. */ struct tulip_rx_desc { s32 status; s32 length; u32 buffer1, buffer2; /* We use only buffer 1. */ }; struct tulip_tx_desc { s32 status; s32 length; u32 buffer1, buffer2; /* We use only buffer 1. */ }; struct tulip_private { struct tulip_rx_desc rx_ring[RX_RING_SIZE]; struct tulip_tx_desc tx_ring[TX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff *tx_skbuff[TX_RING_SIZE]; char rx_buffs[RX_RING_SIZE][PKT_BUF_SZ]; /* temporary Rx buffers. */ struct enet_statistics stats; int setup_frame[48]; /* Pseudo-Tx frame to init address table. */ void (*port_select) (struct device * dev); int (*port_fail) (struct device * dev); char *signature; unsigned int cur_rx, cur_tx; /* The next free ring entry */ unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int port_fix:1; /* Fix if_port to specified port. */ }; struct eeprom { union { struct { /* broken EEPROM structure */ u_char addr[ETH_ALEN]; } ng; struct { /* DEC EtherWorks and other cards which have correct eeprom structure */ u_char dum1[20]; u_char addr[ETH_ALEN]; } ok; } hw; #define ng_addr hw.ng.addr #define ok_addr hw.ok.addr #define EE_SIGNLEN 14 /* should be 102 ? */ u_char sign[EE_SIGNLEN]; }; static int read_eeprom(int ioaddr, struct eeprom *eepp); static int tulip_open(struct device *dev); static void tulip_init_ring(struct device *dev); static int tulip_start_xmit(struct sk_buff *skb, struct device *dev); static int tulip_rx(struct device *dev); #if LINUX_VERSION_CODE < 0x10346 static void tulip_interrupt(int irq, struct pt_regs *regs); #else static void tulip_interrupt(int irq, void *dev_id, struct pt_regs *regs); #endif static int tulip_close(struct device *dev); static struct enet_statistics *tulip_get_stats(struct device *dev); static struct device *tulip_alloc(struct device *dev); #if LINUX_VERSION_CODE < 0x10300 static void set_multicast_list(struct device *dev, int num_addrs, void *addrs); #else static void set_multicast_list(struct device *dev); #endif #define generic21140_fail NULL static void generic21040_select(struct device *dev); static void generic21140_select(struct device *dev); static void generic21041_select(struct device *dev); static void auto21140_select(struct device *dev); static int generic21040_fail(struct device *dev); static int generic21041_fail(struct device *dev); static struct { void (*port_select) (struct device * dev); int (*port_fail) (struct device * dev); unsigned int vendor_id, device_id; char *signature; unsigned int port_auto:1; unsigned int array:1; } cardVendor[] = { { generic21140_select, generic21140_fail, 0x0000c000, PCI_DEVICE_ID_DEC_TULIP_FAST, "smc9332", 0, 0 }, { generic21041_select, generic21041_fail, 0x0000c000, PCI_DEVICE_ID_DEC_TULIP_PLUS, "smc8432", 0, 0 }, { generic21040_select, generic21040_fail, 0x0000c000, PCI_DEVICE_ID_DEC_TULIP, "old smc8432", 0, 0 }, { auto21140_select, generic21140_fail, 0x0000f400, PCI_DEVICE_ID_DEC_TULIP_FAST, "LA100PCI", 1, 0 }, { generic21140_select, generic21140_fail, 0x0000f800, PCI_DEVICE_ID_DEC_TULIP_FAST, "DE500", 0, 0 }, { generic21041_select, generic21041_fail, 0x0000f800, PCI_DEVICE_ID_DEC_TULIP_PLUS, "DE450", 0, 0 }, { generic21040_select, generic21040_fail, 0x0000f800, PCI_DEVICE_ID_DEC_TULIP, "DE43x", 0, 0 }, { generic21040_select, generic21040_fail, 0x0040c700, PCI_DEVICE_ID_DEC_TULIP, "EN9400", 0, 0 }, { generic21040_select, generic21040_fail, 0x00c09500, PCI_DEVICE_ID_DEC_TULIP, "ZNYX312", 0, 1 }, { generic21040_select, generic21040_fail, 0x08002b00, PCI_DEVICE_ID_DEC_TULIP, "QSILVER", 0, 0 }, { generic21040_select, generic21040_fail, 0, PCI_DEVICE_ID_DEC_TULIP, "21040", 0, 0 }, { generic21140_select, generic21140_fail, 0, PCI_DEVICE_ID_DEC_TULIP_FAST, "21140", 0, 0 }, { generic21041_select, generic21041_fail, 0, PCI_DEVICE_ID_DEC_TULIP_PLUS, "21041", 0, 0 }, { NULL, NULL, 0, 0, "Unknown", 0 } }; /* Serial EEPROM section. A "bit" grungy, but we work our way through bit-by-bit :->. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */ #define EE_CS 0x01 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x05 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define EE_ENB (0x4800 | EE_CS) /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << 6) #define EE_READ_CMD (6 << 6) #define EE_ERASE_CMD (7 << 6) #ifdef MODULE static int if_port = TULIP_AUTO_PORT; static size_t alloc_size; #ifdef TULIP_FULL_DUPLEX static int full_duplex = 1; #else static int full_duplex = 0; #endif #endif #define tio_write(val, port) outl(val, ioaddr + port) #define tio_read(port) inl(ioaddr + port) static void inline tio_sia_write(u32 ioaddr, u32 val13, u32 val14, u32 val15) { tio_write(0, CSR13); tio_write(val15, CSR15); tio_write(val14, CSR14); tio_write(val13, CSR13); } /* card_type returns 1 if the card is 'etherarray' */ static int card_type(struct tulip_private *tp, int device_id, int vendor_id) { int n; for (n = 0; cardVendor[n].device_id; n++) if (cardVendor[n].device_id == device_id && (cardVendor[n].vendor_id == vendor_id || cardVendor[n].vendor_id == 0)) break; tp->port_select = cardVendor[n].port_select; tp->port_fail = cardVendor[n].port_fail; tp->signature = cardVendor[n].signature; return (cardVendor[n].array ? 1 : 0); } static int read_eeprom(int ioaddr, struct eeprom *eepp) { int i, n; unsigned short val = 0; int read_cmd = EE_READ_CMD; u_char *p = (u_char *) eepp; for (n = 0; n < sizeof(struct eeprom) / 2; n++, read_cmd++) { tio_write(EE_ENB & ~EE_CS, CSR9); tio_write(EE_ENB, CSR9); /* Shift the read command bits out. */ for (i = 10; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; tio_write(EE_ENB | dataval, CSR9); udelay(100); tio_write(EE_ENB | dataval | EE_SHIFT_CLK, CSR9); udelay(150); tio_write(EE_ENB | dataval, CSR9); udelay(250); } tio_write(EE_ENB, CSR9); for (i = 16; i > 0; i--) { tio_write(EE_ENB | EE_SHIFT_CLK, CSR9); udelay(100); val = (val << 1) | ((tio_read(CSR9) & EE_DATA_READ) ? 1 : 0); tio_write(EE_ENB, CSR9); udelay(100); } /* Terminate the EEPROM access. */ tio_write(EE_ENB & ~EE_CS, CSR9); *p++ = val; *p++ = val >> 8; } /* broken eeprom ? */ p = (u_char *) eepp; for (i = 0; i < 8; i++) if (p[i] != p[15 - i] || p[i] != p[16 + i]) return (0); return (-1); /* broken */ } /* Is this required ? */ static int generic21040_fail(struct device *dev) { int ioaddr = dev->base_addr; return (tio_read(CSR12) & TSIAS_CONERROR); } static int generic21041_fail(struct device *dev) { int ioaddr = dev->base_addr; u32 csr12 = tio_read(CSR12); return ((!(csr12 & TSIAS_CONERROR) || !(csr12 & TSIAS_LNKERROR)) ? 0 : 1); } static void generic21040_select(struct device *dev) { int ioaddr = dev->base_addr; const char *media; dev->if_port &= 3; switch (dev->if_port) { case TULIP_10TP_PORT: media = "10baseT"; break; case TULIP_AUI_PORT: media = "AUI"; break; case TULIP_BNC_PORT: media = "BNC"; break; default: media = "unknown type"; break; } printk("%s: enabling %s port.\n", dev->name, media); /* Set the full duplex match frame. */ tio_write(FULL_DUPLEX_MAGIC, CSR11); tio_write(TSIAC_RESET, CSR13); /* Reset the serial interface */ tio_write((dev->if_port ? TSIAC_NO10TP : 0) | TSIAC_C21040, CSR13); } #if 0 static void generic_timer(struct device *dev, u32 count) { int ioaddr = dev->base_addr; tio_write(count, CSR11); while (tio_read(CSR11) & TGEPT_COUNT); } #endif static void generic21041_select(struct device *dev) { int ioaddr = dev->base_addr; u32 tsiac = TSIAC_C21041; u32 tsiax = TSIAX_10TP; u32 tsiag = TSIAG_10TP; switch (dev->if_port) { case TULIP_AUI_PORT: tsiac |= TSIAC_NO10TP; tsiax = TSIAX_NO10TP; tsiag = TSIAG_AUI; break; case TULIP_BNC_PORT: tsiac |= TSIAC_NO10TP; tsiax = TSIAX_NO10TP; tsiag = TSIAG_BNC; break; default: dev->if_port = TULIP_10TP_PORT; break; } tio_sia_write(ioaddr, tsiac, tsiax, tsiag); if (dev->start) printk("%s: enabling %s port.\n", dev->name, (dev->if_port == TULIP_AUI_PORT) ? "AUI" : (dev->if_port == TULIP_BNC_PORT) ? "BNC" : "10TP"); } static void auto21140_select(struct device *dev) { int i, ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *) dev->priv; /* kick port */ tio_write(TPOLL_TRIGGER, CSR1); tio_write(TINTR_ENABLE, CSR7); tio_write(TCMOD_AUTO | TCMOD_TRxSTART, CSR6); dev->if_port = !(tio_read(CSR12) & TGEPR_FORCEALED); printk("%s: probed %s port.\n", dev->name, dev->if_port ? "100TX" : "10TP"); tio_write((dev->if_port ? TGEPR_FORCE100 : 0) | (tp->full_duplex ? 0 : TGEPR_HALFDUPLEX), CSR12); tio_write(TINTR_DISABLE, CSR7); i = tio_read(CSR8) & 0xffff; tio_write(TCMOD_AUTO, CSR6); } static void generic21140_select(struct device *dev) { int ioaddr = dev->base_addr, csr6; struct tulip_private *tp = (struct tulip_private *) dev->priv; dev->if_port &= 1; csr6 = tio_read(CSR6) & ~(TCMOD_10TP | TCMOD_100TP | TCMOD_TRxSTART | TCMOD_SCRM); /* Stop the transmit process. */ tio_write(csr6 | TCMOD_RxSTART, CSR6); if (dev->start) printk("%s: enabling %s port.\n", dev->name, dev->if_port ? "100TX" : "10TP"); tio_write((dev->if_port ? TCMOD_100TP : TCMOD_10TP) | TCMOD_TRxSTART | TCMOD_TH128 | csr6, CSR6); tio_write((dev->if_port ? TGEPR_FORCE100 : 0) | (tp->full_duplex ? 0 : TGEPR_HALFDUPLEX), CSR12); } static int tulip_open(struct device *dev) { struct tulip_private *tp = (struct tulip_private *) dev->priv; int ioaddr = dev->base_addr; /* Reset the chip, holding bit 0 set at least 10 PCI cycles. */ tio_write(tio_read(CSR0) | TBMOD_RESET, CSR0); udelay(1000); /* Deassert reset. Set 8 longword cache alignment, 8 longword burst. -> Set 32 longword cache alignment, unlimited longword burst ? Wait the specified 50 PCI cycles after a reset by initializing Tx and Rx queues and the address filter list. */ tio_write(tio_read(CSR0) | TBMOD_ALIGN32 | TBMOD_BURST0, CSR0); #if LINUX_VERSION_CODE < 0x10346 if (irq2dev_map[dev->irq] != NULL || (irq2dev_map[dev->irq] = dev) == NULL || dev->irq == 0 || request_irq(dev->irq, &tulip_interrupt, 0, tp->signature)) return -EAGAIN; #else if (request_irq(dev->irq, (void *) &tulip_interrupt, SA_SHIRQ, tp->signature, dev)) return -EAGAIN; #endif tulip_init_ring(dev); /* Fill the whole address filter table with our physical address. */ { unsigned short *eaddrs = (unsigned short *) dev->dev_addr; int *setup_frm = tp->setup_frame, i; /* You must add the broadcast address when doing perfect filtering! */ *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; /* Fill the rest of the accept table with our physical address. */ for (i = 1; i < 16; i++) { *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; } /* Put the setup frame on the Tx list. */ tp->tx_ring[0].length = 0x08000000 | 192; tp->tx_ring[0].buffer1 = virt_to_bus(tp->setup_frame); tp->tx_ring[0].buffer2 = 0; tp->tx_ring[0].status = TRING_OWN; tp->cur_tx++, tp->dirty_tx++; } tio_write(virt_to_bus(tp->rx_ring), CSR3); tio_write(virt_to_bus(tp->tx_ring), CSR4); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; if (tp->port_select) tp->port_select(dev); /* Start the chip's Tx and Rx processes. */ tio_write(tio_read(CSR6) | TCMOD_TRxSTART | (tp->full_duplex ? TCMOD_FULLDUPLEX : 0), CSR6); /* Trigger an immediate transmit demand to process the setup frame. */ tio_write(TPOLL_TRIGGER, CSR1); /* Enable interrupts by setting the interrupt mask. */ tio_write(TINTR_ENABLE, CSR7); MOD_INC_USE_COUNT; return 0; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void tulip_init_ring(struct device *dev) { struct tulip_private *tp = (struct tulip_private *) dev->priv; int i; tp->tx_full = 0; tp->cur_rx = tp->cur_tx = 0; tp->dirty_rx = tp->dirty_tx = 0; for (i = 0; i < RX_RING_SIZE; i++) { tp->rx_ring[i].status = TRING_OWN; tp->rx_ring[i].length = PKT_BUF_SZ; tp->rx_ring[i].buffer1 = virt_to_bus(tp->rx_buffs[i]); tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i + 1]); } /* Mark the last entry as wrapping the ring. */ tp->rx_ring[i - 1].length = PKT_BUF_SZ | 0x02000000; tp->rx_ring[i - 1].buffer2 = virt_to_bus(&tp->rx_ring[0]); /* The Tx buffer descriptor is filled in as needed, but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { tp->tx_ring[i].status = 0x00000000; } } static int tulip_start_xmit(struct sk_buff *skb, struct device *dev) { struct tulip_private *tp = (struct tulip_private *) dev->priv; int ioaddr = dev->base_addr; int entry; /* Transmitter timeout, serious problems. */ if (dev->tbusy || (tp->port_fail && tp->port_fail(dev))) { int tickssofar = jiffies - dev->trans_start; int i; if (tickssofar < 40) return (1); if (tp->port_select) { if (!tp->port_fix) dev->if_port++; tp->port_select(dev); dev->trans_start = jiffies; return (0); } printk("%s: transmit timed out, status %8.8x," "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n", dev->name, tio_read(CSR5), tio_read(CSR12), tio_read(CSR13), tio_read(CSR14), tio_read(CSR15)); #ifndef __alpha__ printk(" Rx ring %8.8x: ", (int) tp->rx_ring); #endif for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int) tp->rx_ring[i].status); #ifndef __alpha__ printk("\n Tx ring %8.8x: ", (int) tp->tx_ring); #endif for (i = 0; i < TX_RING_SIZE; i++) printk(" %8.8x", (unsigned int) tp->tx_ring[i].status); printk("\n"); tp->stats.tx_errors++; /* Perhaps we should reinitialize the hardware here. */ dev->if_port = 0; tio_write(TSIAC_CONFIG, CSR13); /* Start the chip's Tx and Rx processes . */ tio_write(TCMOD_10TP | TCMOD_TRxSTART, CSR6); /* Trigger an immediate transmit demand. */ tio_write(TPOLL_TRIGGER, CSR1); dev->tbusy = 0; dev->trans_start = jiffies; return (0); } if (skb == NULL || skb->len <= 0) { printk("%s: Obsolete driver layer request made: skbuff==NULL.\n", dev->name); dev_tint(dev); return (0); } /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. If this ever occurs the queue layer is doing something evil! */ if (set_bit(0, (void *) &dev->tbusy) != 0) { printk("%s: Transmitter access conflict.\n", dev->name); return 1; } /* Caution: the write order is important here, set the base address with the "ownership" bits last. */ /* Calculate the next Tx descriptor entry. */ entry = tp->cur_tx % TX_RING_SIZE; tp->tx_full = 1; tp->tx_skbuff[entry] = skb; tp->tx_ring[entry].length = skb->len | (entry == TX_RING_SIZE - 1 ? 0xe2000000 : 0xe0000000); tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data); tp->tx_ring[entry].buffer2 = 0; tp->tx_ring[entry].status = TRING_OWN; /* Pass ownership to the chip. */ tp->cur_tx++; /* Trigger an immediate transmit demand. */ tio_write(TPOLL_TRIGGER, CSR1); dev->trans_start = jiffies; return (0); } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ #if LINUX_VERSION_CODE < 0x10346 static void tulip_interrupt(int irq, struct pt_regs *regs) #else static void tulip_interrupt(int irq, void *dev_id, struct pt_regs *regs) #endif { #if LINUX_VERSION_CODE < 0x10346 struct device *dev = (struct device *) (irq2dev_map[irq]); #else struct device *dev = (struct device *) dev_id; #endif struct tulip_private *lp; int csr5, ioaddr, boguscnt = 10; if (dev == NULL) { printk("tulip_interrupt(): irq %d for unknown device.\n", irq); return; } ioaddr = dev->base_addr; lp = (struct tulip_private *) dev->priv; if (dev->interrupt) printk("%s: Re-entering the interrupt handler.\n", dev->name); dev->interrupt = 1; do { csr5 = tio_read(CSR5); /* Acknowledge all of the current interrupt sources ASAP. */ tio_write(csr5 & TSTAT_CLEARINTR, CSR5); /* check interrupt ? */ if ((csr5 & (TSTAT_NORINTR | TSTAT_ABNINTR)) == 0) break; if (csr5 & TSTAT_RxINTR) /* Rx interrupt */ tulip_rx(dev); if (csr5 & TSTAT_TxINTR) { /* Tx-done interrupt */ int dirty_tx = lp->dirty_tx; while (dirty_tx < lp->cur_tx) { int entry = dirty_tx % TX_RING_SIZE; int status = lp->tx_ring[entry].status; if (status < 0) break; /* It still hasn't been Txed */ if (status & TRING_ERROR) { /* There was an major error, log it. */ lp->stats.tx_errors++; if (status & TRING_TxABORT) lp->stats.tx_aborted_errors++; if (status & TRING_TxCARR) lp->stats.tx_carrier_errors++; if (status & TRING_TxWINDOW) lp->stats.tx_window_errors++; if (status & TRING_TxFIFO) lp->stats.tx_fifo_errors++; if ((status & TRING_TxHEARTBEAT) && !lp->full_duplex) lp->stats.tx_heartbeat_errors++; #ifdef ETHER_STATS if (status & 0x0100) lp->stats.collisions16++; #endif } else { #ifdef ETHER_STATS if (status & 0x0001) lp->stats.tx_deferred++; #endif lp->stats.collisions += (status >> 3) & 15; lp->stats.tx_packets++; } /* Free the original skb. */ dev_kfree_skb(lp->tx_skbuff[entry], FREE_WRITE); dirty_tx++; } #ifndef final_version if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) { printk("out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dirty_tx, lp->cur_tx, lp->tx_full); dirty_tx += TX_RING_SIZE; } #endif if (lp->tx_full && dev->tbusy && dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) { /* The ring is no longer full, clear tbusy. */ lp->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); } lp->dirty_tx = dirty_tx; } /* Log errors. */ if (csr5 & TSTAT_ABNINTR) { /* Abnormal error summary bit. */ if (csr5 & TSTAT_TxTOUT) lp->stats.tx_errors++; /* Tx babble. */ if (csr5 & TSTAT_RxMISSED) { /* Missed a Rx frame. */ lp->stats.rx_errors++; lp->stats.rx_missed_errors += tio_read(CSR8) & 0xffff; } if (csr5 & TSTAT_TEXPIRED) { printk("%s: Something Wicked happened! %8.8x.\n", dev->name, csr5); /* Hmmmmm, it's not clear what to do here. */ } } if (--boguscnt < 0) { printk("%s: Too much work at interrupt, csr5=0x%8.8x.\n", dev->name, csr5); /* Clear all interrupt sources. */ tio_write(TSTAT_CLEARINTR, CSR5); break; } } while (1); /* Special code for testing *only*. */ { static int stopit = 10; if (dev->start == 0 && --stopit < 0) { printk("%s: Emergency stop, looping startup interrupt.\n", dev->name); #if LINUX_VERSION_CODE < 0x10346 free_irq(irq); #else free_irq(irq, dev); #endif } } dev->interrupt = 0; return; } static int tulip_rx(struct device *dev) { struct tulip_private *lp = (struct tulip_private *) dev->priv; int entry = lp->cur_rx % RX_RING_SIZE; int i; /* If we own the next entry, it's a new packet. Send it up. */ while (lp->rx_ring[entry].status >= 0) { int status = lp->rx_ring[entry].status; if ((status & TRING_RxDESCMASK) != TRING_RxDESCMASK) { printk("%s: Ethernet frame spanned multiple buffers," "status %8.8x!\n", dev->name, status); } else if (status & TRING_ERROR) { /* There was a fatal error. */ lp->stats.rx_errors++; /* end of a packet. */ if (status & TRING_RxLENGTH) lp->stats.rx_length_errors++; if (status & TRING_RxFRAME) lp->stats.rx_frame_errors++; if (status & TRING_RxCRC) lp->stats.rx_crc_errors++; if (status & TRING_RxFIFO) lp->stats.rx_fifo_errors++; } else { /* Malloc up new buffer, compatible with net-2e. */ short pkt_len = lp->rx_ring[entry].status >> 16; struct sk_buff *skb; #if LINUX_VERSION_CODE < 0x10300 skb = alloc_skb(pkt_len, GFP_ATOMIC); #else skb = dev_alloc_skb(pkt_len + 2); #endif if (skb == NULL) { printk("%s: Memory squeeze, deferring packet.\n", dev->name); /* Check that at least two ring entries are free. If not, free one and mark stats->rx_dropped++. */ for (i = 0; i < RX_RING_SIZE; i++) if (lp->rx_ring[(entry + i) % RX_RING_SIZE].status < 0) break; if (i > RX_RING_SIZE - 2) { lp->stats.rx_dropped++; lp->rx_ring[entry].status = TRING_OWN; lp->cur_rx++; } break; } skb->dev = dev; #if LINUX_VERSION_CODE < 0x10300 skb->len = pkt_len; memcpy(skb->data, bus_to_virt(lp->rx_ring[entry].buffer1), pkt_len); #else skb_reserve(skb, 2); memcpy(skb_put(skb, pkt_len), bus_to_virt(lp->rx_ring[entry].buffer1), pkt_len); /* Needed for 1.3.x */ skb->protocol = eth_type_trans(skb, dev); #endif netif_rx(skb); lp->stats.rx_packets++; } lp->rx_ring[entry].status = TRING_OWN; entry = (++lp->cur_rx) % RX_RING_SIZE; } return (0); } static int tulip_close(struct device *dev) { int ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *) dev->priv; dev->start = 0; dev->tbusy = 1; /* Disable interrupts by clearing the interrupt mask. */ tio_write(TINTR_DISABLE, CSR7); /* Stop the chip's Tx and Rx processes. */ tio_write(tio_read(CSR6) & ~(TCMOD_TRxSTART), CSR6); /* Leave the card in 10baseT state. */ tio_write(TSIAC_CONFIG, CSR13); tp->stats.rx_missed_errors += tio_read(CSR8) & 0xffff; tio_write(0, CSR13); /* tio_write(0, CSR8); wake up chip ? */ #if LINUX_VERSION_CODE < 0x10346 free_irq(dev->irq); irq2dev_map[dev->irq] = 0; #else free_irq(dev->irq, dev); #endif MOD_DEC_USE_COUNT; return (0); } static int tulip_config(struct device *dev, struct ifmap *map) { struct tulip_private *tp = (struct tulip_private *) dev->priv; if (map->port == 0xff) return (-EINVAL); dev->if_port = map->port; tp->port_fix = 1; if (tp->port_select) tp->port_select(dev); return (0); } static struct enet_statistics * tulip_get_stats(struct device *dev) { struct tulip_private *tp = (struct tulip_private *) dev->priv; /* short ioaddr = dev->base_addr; */ return (&tp->stats); } /* * Set or clear the multicast filter for this adaptor. */ #if LINUX_VERSION_CODE < 0x10300 static void set_multicast_list(struct device *dev, int num_addrs, void *addrs) #else static void set_multicast_list(struct device *dev) #endif { short ioaddr = dev->base_addr; int csr6 = tio_read(CSR6) & ~(TCMOD_MODEMASK | TCMOD_FILTERMASK); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. why ALLMULTI ? */ tio_write(csr6 | TCMOD_PROMISC | TCMOD_ALLMCAST, CSR6); /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); } else if (dev->mc_count > 15 || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ tio_write(csr6 | TCMOD_ALLMCAST, CSR6); } else { struct tulip_private *tp = (struct tulip_private *) dev->priv; struct dev_mc_list *dmi = dev->mc_list; int *setup_frm = tp->setup_frame; unsigned short *eaddrs; int i; /* We have <= 15 addresses that we can use the wonderful 16 address perfect filtering of the Tulip. Note that only the low shortword of setup_frame[] is valid. */ tio_write(csr6 | 0x0000, CSR6); for (i = 0; i < dev->mc_count; i++) { eaddrs = (unsigned short *) dmi->dmi_addr; dmi = dmi->next; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs++; } /* Fill the rest of the table with our physical address. */ eaddrs = (unsigned short *) dev->dev_addr; do { *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; } while (++i < 16); /* Now add this frame to the Tx list. */ } } static struct device *tulip_alloc(struct device *dev) { struct tulip_private *tp; char *buff; #ifndef MODULE size_t alloc_size; #endif if (!dev || dev->priv) { struct device *olddev = dev; alloc_size = sizeof(struct device) + sizeof(struct tulip_private) + ETHNAMSIZ; alloc_size = ROUND_UP(alloc_size, 8); buff = (char *) kmalloc(alloc_size, GFP_KERNEL); dev = (struct device *) buff; if (dev == NULL) { printk("tulip_alloc: kmalloc failed.\n"); return (NULL); } tp = (struct tulip_private *) (buff + sizeof(struct device)); memset(buff, 0, alloc_size); dev->priv = (void *) tp; dev->name = (char *) (buff + sizeof(struct device) + sizeof(struct tulip_private)); if (olddev) { dev->next = olddev->next; olddev->next = dev; } } else { alloc_size = ROUND_UP(sizeof(struct tulip_private), 8); tp = (struct tulip_private *) kmalloc(alloc_size, GFP_KERNEL); memset((void *) tp, 0, alloc_size); dev->priv = (void *) tp; } return (dev); } int tulip_hwinit(struct device *dev, int ioaddr, int irq, int device_id) { /* See note below on the Znyx 315 etherarray. */ static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'}; char detect_mesg[80], *mesgp = detect_mesg; struct tulip_private *tp = (struct tulip_private *) dev->priv; int i; unsigned short sum, bitsum; if (check_region(ioaddr, TULIP_TOTAL_SIZE) != 0) { printk("tulip_hwinit: region already allocated at %#3x.\n", ioaddr); return (-1); } mesgp += sprintf(mesgp, "(DEC 21%d4%d Tulip", device_id == PCI_DEVICE_ID_DEC_TULIP_FAST, device_id == PCI_DEVICE_ID_DEC_TULIP_PLUS); /* Stop the chip's Tx and Rx processes. */ tio_write(tio_read(CSR6) & ~TCMOD_TRxSTART, CSR6); /* Clear the missed-packet counter. */ i = tio_read(CSR8) & 0xffff; if (device_id == PCI_DEVICE_ID_DEC_TULIP_PLUS && (tio_read(CSR9) & 0x8000)) { mesgp += sprintf(mesgp, " treat as 21040"); device_id = PCI_DEVICE_ID_DEC_TULIP; } /* The station address ROM is read byte serially. The register must be polled, waiting for the value to be read bit serially from the EEPROM. */ sum = 0; if (device_id == PCI_DEVICE_ID_DEC_TULIP) { tio_write(0, CSR9); /* Reset the pointer with a dummy write. */ bitsum = 0xff; for (i = 0; i < 6; i++) { int value, boguscnt = 100000; do value = tio_read(CSR9); while (value < 0 && --boguscnt > 0); dev->dev_addr[i] = value; sum += value & 0xFF; bitsum &= value; } } else { /* Must be a 21140/21041, with a serial EEPROM interface. */ struct eeprom eep; u_char *addr; if (read_eeprom(ioaddr, &eep) < 0) { addr = eep.ng_addr; /* broken EEPROM structure */ } else { addr = eep.ok_addr; /* DEC EtherWorks */ } for (i = 0; i < ETH_ALEN; i++) { sum += addr[i]; dev->dev_addr[i] = addr[i]; } } /* Make certain the data structures are quadword aligned. */ mesgp += sprintf(mesgp, ") at %#3x, ", ioaddr); /* On the Zynx 315 etherarray boards only the first Tulip has an EEPROM. The addresses of the subsequent ports are derived from the first. */ if (sum == 0) { for (i = 0; i < ETH_ALEN - 1; i++) dev->dev_addr[i] = last_phys_addr[i]; dev->dev_addr[i] = last_phys_addr[i] + 1; } for (i = 0; i < ETH_ALEN - 1; i++) mesgp += sprintf(mesgp, "%2.2x:", dev->dev_addr[i]); mesgp += sprintf(mesgp, "%2.2x, IRQ %d\n", last_phys_addr[i] = dev->dev_addr[i], irq); /* copy ethernet address */ if (card_type(tp, device_id, htonl((*(int *) dev->dev_addr) & 0xFFFFFF))) for (i = 0; i < ETH_ALEN - 1; i++) last_phys_addr[i] = dev->dev_addr[i]; /* We do a request_region() only to register /proc/ioports info. */ request_region(ioaddr, TULIP_TOTAL_SIZE, tp->signature); dev->base_addr = ioaddr; dev->irq = irq; /* The Tulip-specific entries in the device structure. */ dev->open = &tulip_open; dev->hard_start_xmit = &tulip_start_xmit; dev->stop = &tulip_close; dev->get_stats = &tulip_get_stats; dev->set_config = &tulip_config; dev->set_multicast_list = &set_multicast_list; #ifdef MODULE ether_setup(dev); if (if_port == TULIP_AUTO_PORT) if_port = TULIP_PORT; else tp->port_fix = 1; dev->if_port = if_port; tp->full_duplex = full_duplex; #else #ifdef TULIP_FULL_DUPLEX tp->full_duplex = 1; #endif init_etherdev(dev, 0); dev->if_port = TULIP_PORT; #endif #ifdef TULIP_FIX_PORT tp->port_fix = 1; #endif printk("%s: %s %s", dev->name, tp->signature, detect_mesg); /* Reset the xcvr interface and turn on heartbeat. */ tio_write(TSIAC_RESET, CSR13); tio_write(TSIAC_CONFIG, CSR13); return (0); } int tulip_probe(struct device *dev) { static struct device *tulip_head = NULL; u_char pci_bus, pci_device_fn, pci_latency, pci_irq; u_int pci_ioaddr; u_short pci_command; u_int pci_chips[] = { PCI_DEVICE_ID_DEC_TULIP, PCI_DEVICE_ID_DEC_TULIP_FAST, PCI_DEVICE_ID_DEC_TULIP_PLUS, PCI_DEVICE_ID_NONE }; int num = 0, cno; int pci_index; if (!pcibios_present()) return (-ENODEV); for (pci_index = 0; pci_index < 8; pci_index++) { /* Search for the PCI_DEVICE_ID_DEV_TULIP* chips */ for (cno = 0; pci_chips[cno] != PCI_DEVICE_ID_NONE; cno++) if (pcibios_find_device(PCI_VENDOR_ID_DEC, pci_chips[cno], pci_index, &pci_bus, &pci_device_fn) == 0) { struct device *dp; /* get IO address */ pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, &pci_ioaddr); /* Remove I/O space marker in bit 0. */ pci_ioaddr &= ~3; for (dp = tulip_head; dp != NULL; dp = dp->next) if (dp->base_addr == pci_ioaddr) break; if (dp) continue; /* get IRQ */ pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, &pci_irq); #ifdef MODULE /* compare requested IRQ/IO address */ if (dev && dev->base_addr && dev->base_addr != pci_ioaddr) continue; #else if ((dev = tulip_alloc(dev)) == NULL) break; #endif if (!tulip_head) { printk(version); tulip_head = dev; } /* Get and check the bus-master and latency values. */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); if (!(pci_command & PCI_COMMAND_MASTER)) { printk(" PCI Master Bit has not been set!" " Setting...\n"); pci_command |= PCI_COMMAND_MASTER; pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, pci_command); } pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < 10) { printk(" PCI latency timer (CFLT) is" " unreasonably low at %d." " Setting to 100 clocks.\n", pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, 100); } if (tulip_hwinit(dev, pci_ioaddr, pci_irq, pci_chips[cno]) < 0) continue; num++; #ifdef MODULE return (0); #endif #ifdef TULIP_MAX_CARDS if (num >= TULIP_MAX_CARDS) return (0); #endif } } return (num > 0 ? 0 : -ENODEV); } #ifdef MODULE #ifdef __alpha__ #if 1 static int io = 0xb000; #else static int io = 0x10400; #endif #else static int io = 0xfc80; #endif static struct device *mod_dev; int init_module(void) { if ((mod_dev = tulip_alloc(0)) == NULL) return (-EIO); mod_dev->base_addr = io; mod_dev->irq = 0; mod_dev->init = &tulip_probe; if (register_netdev(mod_dev)) { printk("tulip: register_netdev() returned non-zero.\n"); kfree_s(mod_dev, alloc_size); return -EIO; } return (0); } void cleanup_module(void) { release_region(mod_dev->base_addr, TULIP_TOTAL_SIZE); unregister_netdev(mod_dev); kfree_s(mod_dev, alloc_size); } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -m486 -c tulip.c" * c-indent-level: 4 * tab-width: 4 * End: */