/* fdomain.c -- Future Domain TMC-16x0 SCSI driver * Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu * Revised: Mon Jun 5 09:21:54 1995 by faith@cs.unc.edu * Author: Rickard E. Faith, faith@cs.unc.edu * Copyright 1992, 1993, 1994, 1995 Rickard E. Faith * * $Id: fdomain.c,v 5.28 1995/06/05 13:21:57 faith Exp $ * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. ************************************************************************** DESCRIPTION: This is the Linux low-level SCSI driver for Future Domain TMC-1660/1680 TMC-1650/1670, and TMC-3260 SCSI host adapters. The 1650 and 1670 have a 25-pin external connector, whereas the 1660 and 1680 have a SCSI-2 50-pin high-density external connector. The 1670 and 1680 have floppy disk controllers built in. The TMC-3260 is a PCI bus card. Future Domain's older boards are based on the TMC-1800 chip, and this driver was originally written for a TMC-1680 board with the TMC-1800 chip. More recently, boards are being produced with the TMC-18C50 and TMC-18C30 chips. The latest and greatest board may not work with this driver. If you have to patch this driver so that it will recognize your board's BIOS signature, then the driver may fail to function after the board is detected. The following BIOS versions are supported: 2.0, 3.0, 3.2, 3.4, and 3.5. The following chips are supported: TMC-1800, TMC-18C50, TMC-18C30. Reports suggest that the driver will also work with the 36C70 chip and with the Quantum ISA-200S and ISA-250MG SCSI adapters. Please note that the drive ordering that Future Domain implemented in BIOS versions 3.4 and 3.5 is the opposite of the order (currently) used by the rest of the SCSI industry. If you have BIOS version 3.4 or 3.5, and have more then one drive, then the drive ordering will be the reverse of that which you see under DOS. For example, under DOS SCSI ID 0 will be D: and SCSI ID 1 will be C: (the boot device). Under Linux, SCSI ID 0 will be /dev/sda and SCSI ID 1 will be /dev/sdb. The Linux ordering is consistent with that provided by all the other SCSI drivers for Linux. If you want this changed, send me patches that are protected by #ifdefs. If you have a TMC-8xx or TMC-9xx board, then this is not the driver for your board. Please refer to the Seagate driver for more information and possible support. REFERENCES USED: "TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation, 1990. "Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain Corporation, January 1992. "LXT SCSI Products: Specifications and OEM Technical Manual (Revision B/September 1991)", Maxtor Corporation, 1991. "7213S product Manual (Revision P3)", Maxtor Corporation, 1992. "Draft Proposed American National Standard: Small Computer System Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109, revision 10h, October 17, 1991) Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric Youngdale (ericy@cais.com), 1992. Private communication, Tuong Le (Future Domain Engineering department), 1994. (Disk geometry computations for Future Domain BIOS version 3.4, and TMC-18C30 detection.) Hogan, Thom. The Programmer's PC Sourcebook. Microsoft Press, 1988. Page 60 (2.39: Disk Partition Table Layout). "18C30 Technical Reference Manual", Future Domain Corporation, 1993, page 6-1. NOTES ON REFERENCES: The Maxtor manuals were free. Maxtor telephone technical support is great! The Future Domain manuals were $25 and $35. They document the chip, not the TMC-16x0 boards, so some information I had to guess at. In 1992, Future Domain sold DOS BIOS source for $250 and the UN*X driver source was $750, but these required a non-disclosure agreement, so even if I could have afforded them, they would *not* have been useful for writing this publically distributable driver. Future Domain technical support has provided some information on the phone and have sent a few useful FAXs. They have been much more helpful since they started to recognize that the word "Linux" refers to an operating system :-). ALPHA TESTERS: There are many other alpha testers that come and go as the driver develops. The people listed here were most helpful in times of greatest need (mostly early on -- I've probably left out a few worthy people in more recent times): Todd Carrico (todd@wutc.wustl.edu), Dan Poirier (poirier@cs.unc.edu ), Ken Corey (kenc@sol.acs.unt.edu), C. de Bruin (bruin@bruin@sterbbs.nl), Sakari Aaltonen (sakaria@vipunen.hit.fi), John Rice (rice@xanth.cs.odu.edu), Brad Yearwood (brad@optilink.com), and Ray Toy (toy@soho.crd.ge.com). Special thanks to Tien-Wan Yang (twyang@cs.uh.edu), who graciously lent me his 18C50-based card for debugging. He is the sole reason that this driver works with the 18C50 chip. Thanks to Dave Newman (dnewman@crl.com) for providing initial patches for the version 3.4 BIOS. Thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing patches that support the TMC-3260, a PCI bus card with the 36C70 chip. The 36C70 chip appears to be "completely compatible" with the 18C30 chip. Thanks to Eric Kasten (tigger@petroglyph.cl.msu.edu) for providing the patch for the version 3.5 BIOS. Thanks for Stephen Henson (shenson@nyx10.cs.du.edu) for providing the patch for the Quantum ISA-200S SCSI adapter. Thanks to Adam Bowen for the signature to the 1610M/MER/MEX scsi cards, and to Martin Andrews (andrewm@ccfadm.eeg.ccf.org) for the signature to some random TMC-1680 repackaged by IBM. Thanks for Mark Singer (elf@netcom.com) and Richard Simpson (rsimpson@ewrcsdra.demon.co.uk) for more Quantum signatures and detective work on the Quantum RAM layout. All of the alpha testers deserve much thanks. NOTES ON USER DEFINABLE OPTIONS: DEBUG: This turns on the printing of various debug information. ENABLE_PARITY: This turns on SCSI parity checking. With the current driver, all attached devices must support SCSI parity. If none of your devices support parity, then you can probably get the driver to work by turning this option off. I have no way of testing this, however. FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the 18C30 chip have a 2k cache). When this many 512 byte blocks are filled by the SCSI device, an interrupt will be raised. Therefore, this could be as low as 0, or as high as 16. Note, however, that values which are too high or too low seem to prevent any interrupts from occurring, and thereby lock up the machine. I have found that 2 is a good number, but throughput may be increased by changing this value to values which are close to 2. Please let me know if you try any different values. DO_DETECT: This activates some old scan code which was needed before the high level drivers got fixed. If you are having trouble with the driver, turning this on should not hurt, and might help. Please let me know if this is the case, since this code will be removed from future drivers. RESELECTION: This is no longer an option, since I gave up trying to implement it in version 4.x of this driver. It did not improve performance at all and made the driver unstable (because I never found one of the two race conditions which were introduced by the multiple outstanding command code). The instability seems a very high price to pay just so that you don't have to wait for the tape to rewind. If you want this feature implemented, send me patches. I'll be happy to send a copy of my (broken) driver to anyone who would like to see a copy. **************************************************************************/ #include #include #include "../block/blk.h" #include "scsi.h" #include "hosts.h" #include "fdomain.h" #include #include #include #include #define VERSION "$Revision: 5.28 $" /* START OF USER DEFINABLE OPTIONS */ #define DEBUG 1 /* Enable debugging output */ #define ENABLE_PARITY 1 /* Enable SCSI Parity */ #define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */ #define DO_DETECT 0 /* Do device detection here (see scsi.c) */ /* END OF USER DEFINABLE OPTIONS */ #if DEBUG #define EVERY_ACCESS 0 /* Write a line on every scsi access */ #define ERRORS_ONLY 1 /* Only write a line if there is an error */ #define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */ #define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */ #define DEBUG_ABORT 1 /* Debug abort() routine */ #define DEBUG_RESET 1 /* Debug reset() routine */ #define DEBUG_RACE 1 /* Debug interrupt-driven race condition */ #else #define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */ #define ERRORS_ONLY 0 #define DEBUG_DETECT 0 #define DEBUG_MESSAGES 0 #define DEBUG_ABORT 0 #define DEBUG_RESET 0 #define DEBUG_RACE 0 #endif /* Errors are reported on the line, so we don't need to report them again */ #if EVERY_ACCESS #undef ERRORS_ONLY #define ERRORS_ONLY 0 #endif #if ENABLE_PARITY #define PARITY_MASK 0x08 #else #define PARITY_MASK 0x00 #endif enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; enum { in_arbitration = 0x02, in_selection = 0x04, in_other = 0x08, disconnect = 0x10, aborted = 0x20, sent_ident = 0x40, }; enum in_port_type { Read_SCSI_Data = 0, SCSI_Status = 1, TMC_Status = 2, FIFO_Status = 3, /* tmc18c50/tmc18c30 only */ Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */ LSB_ID_Code = 5, MSB_ID_Code = 6, Read_Loopback = 7, SCSI_Data_NoACK = 8, Interrupt_Status = 9, Configuration1 = 10, Configuration2 = 11, /* tmc18c50/tmc18c30 only */ Read_FIFO = 12, FIFO_Data_Count = 14 }; enum out_port_type { Write_SCSI_Data = 0, SCSI_Cntl = 1, Interrupt_Cntl = 2, SCSI_Mode_Cntl = 3, TMC_Cntl = 4, Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */ Write_Loopback = 7, IO_Control = 11, /* tmc18c30 only */ Write_FIFO = 12 }; static int port_base = 0; static void *bios_base = NULL; static int bios_major = 0; static int bios_minor = 0; static int PCI_bus = 0; static int Quantum = 0; /* Quantum board variant */ static int interrupt_level = 0; static volatile int in_command = 0; static Scsi_Cmnd *current_SC = NULL; static enum chip_type chip = unknown; static int adapter_mask = 0x40; #if DEBUG_RACE static volatile int in_interrupt_flag = 0; #endif static int SCSI_Mode_Cntl_port; static int FIFO_Data_Count_port; static int Interrupt_Cntl_port; static int Interrupt_Status_port; static int Read_FIFO_port; static int Read_SCSI_Data_port; static int SCSI_Cntl_port; static int SCSI_Data_NoACK_port; static int SCSI_Status_port; static int TMC_Cntl_port; static int TMC_Status_port; static int Write_FIFO_port; static int Write_SCSI_Data_port; static int FIFO_Size = 0x2000; /* 8k FIFO for pre-tmc18c30 chips */ extern void fdomain_16x0_intr( int irq, struct pt_regs * regs ); static void *addresses[] = { (void *)0xc8000, (void *)0xca000, (void *)0xce000, (void *)0xde000, (void *)0xd0000, /* Extra addresses for PCI boards */ (void *)0xe0000, }; #define ADDRESS_COUNT (sizeof( addresses ) / sizeof( unsigned )) static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 }; #define PORT_COUNT (sizeof( ports ) / sizeof( unsigned short )) static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 }; /* READ THIS BEFORE YOU ADD A SIGNATURE! READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME! READ EVERY WORD, ESPECIALLY THE WORD *NOT* This driver works *ONLY* for Future Domain cards using the TMC-1800, TMC-18C50, or TMC-18C30 chip. This includes models TMC-1650, 1660, 1670, and 1680. The following BIOS signature signatures are for boards which do *NOT* work with this driver (these TMC-8xx and TMC-9xx boards may work with the Seagate driver): FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88 FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89 FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90 FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90 FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92 */ struct signature { char *signature; int sig_offset; int sig_length; int major_bios_version; int minor_bios_version; int flag; /* 1 == PCI_bus, 2 == ISA_200S, 3 == ISA_250MG, 4 == ISA_200S */ } signatures[] = { /* 1 2 3 4 5 6 */ /* 123456789012345678901234567890123456789012345678901234567890 */ { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V1.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 72, 50, 2, 0, 2 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.0", 73, 43, 2, 0, 3 }, { "FUTURE DOMAIN CORP. (C) 1991 1800-V2.0.", 72, 39, 2, 0, 4 }, { "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0, 0 }, { "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2, 0 }, { "IBM F1 P2 BIOS v1.0104/29/93", 5, 28, 3, -1, 0 }, { "Future Domain Corp. V1.0008/18/93", 5, 33, 3, 4, 0 }, { "Future Domain Corp. V1.0008/18/93", 26, 33, 3, 4, 1 }, /* This next signature may not be a 3.5 bios */ { "Future Domain Corp. V2.0108/18/93", 5, 33, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.5008/18/93", 5, 34, 3, 5, 0 }, { "FUTURE DOMAIN 18c30/18c50/1800 (C) 1994 V3.5", 5, 44, 3, 5, 0 }, { "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1, 0 }, /* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGNATURE Also, fix the disk geometry code for your signature and send your changes for faith@cs.unc.edu. Above all, do *NOT* change any old signatures! Note that the last line will match a "generic" 18XX bios. Because Future Domain has changed the host SCSI ID and/or the location of the geometry information in the on-board RAM area for each of the first three BIOS's, it is still important to enter a fully qualified signature in the table for any new BIOS's (after the host SCSI ID and geometry location are verified). */ }; #define SIGNATURE_COUNT (sizeof( signatures ) / sizeof( struct signature )) static void print_banner( struct Scsi_Host *shpnt ) { if (!shpnt) return; /* This won't ever happen */ printk( "scsi%d : BIOS version ", shpnt->host_no ); if (bios_major >= 0) printk( "%d.", bios_major ); else printk( "?." ); if (bios_minor >= 0) printk( "%d", bios_minor ); else printk( "?." ); printk( " at 0x%x using scsi id %d\n", (unsigned)bios_base, shpnt->this_id ); printk( "scsi%d : %s chip at 0x%x irq ", shpnt->host_no, chip == tmc1800 ? "TMC-1800" : (chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? "TMC-18C30" : "Unknown")), port_base ); if (interrupt_level) printk( "%d", interrupt_level ); else printk( "" ); if (PCI_bus) printk( " (PCI bus)" ); printk( "\n" ); } static void do_pause( unsigned amount ) /* Pause for amount*10 milliseconds */ { unsigned long the_time = jiffies + amount; /* 0.01 seconds per jiffy */ while (jiffies < the_time); } inline static void fdomain_make_bus_idle( void ) { outb( 0, SCSI_Cntl_port ); outb( 0, SCSI_Mode_Cntl_port ); if (chip == tmc18c50 || chip == tmc18c30) outb( 0x21 | PARITY_MASK, TMC_Cntl_port ); /* Clear forced intr. */ else outb( 0x01 | PARITY_MASK, TMC_Cntl_port ); } static int fdomain_is_valid_port( int port ) { int options; #if DEBUG_DETECT printk( " (%x%x),", inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) ); #endif /* The MCA ID is a unique id for each MCA compatible board. We are using ISA boards, but Future Domain provides the MCA ID anyway. We can use this ID to ensure that this is a Future Domain TMC-1660/TMC-1680. */ if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */ if (inb( port + LSB_ID_Code ) != 0x27) return 0; if (inb( port + MSB_ID_Code ) != 0x61) return 0; chip = tmc1800; } else { /* test for 0xe960 id */ if (inb( port + MSB_ID_Code ) != 0x60) return 0; chip = tmc18c50; #if 0 /* Try to toggle 32-bit mode. This only works on an 18c30 chip. (User reports say that this doesn't work at all, so we'll use the other method.) */ outb( 0x80, port + IO_Control ); if (inb( port + Configuration2 ) & 0x80 == 0x80) { outb( 0x00, port + IO_Control ); if (inb( port + Configuration2 ) & 0x80 == 0x00) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ } } #else /* That should have worked, but appears to have problems. Lets assume it is an 18c30 if the RAM is disabled. */ if (inb( port + Configuration2 ) & 0x02) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ } #endif /* If that failed, we are an 18c50. */ } /* We have a valid MCA ID for a TMC-1660/TMC-1680 Future Domain board. Now, check to be sure the bios_base matches these ports. If someone was unlucky enough to have purchased more than one Future Domain board, then they will have to modify this code, as we only detect one board here. [The one with the lowest bios_base.] */ options = inb( port + Configuration1 ); #if DEBUG_DETECT printk( " Options = %x\n", options ); #endif /* Check for board with lowest bios_base -- this isn't valid for the 18c30 or for boards on the PCI bus, so just assume we have the right board. */ if (chip != tmc18c30 && !PCI_bus && addresses[ (options & 0xc0) >> 6 ] != bios_base) return 0; /* Get the IRQ from the options. */ interrupt_level = ints[ (options & 0x0e) >> 1 ]; return 1; } static int fdomain_test_loopback( void ) { int i; int result; for (i = 0; i < 255; i++) { outb( i, port_base + Write_Loopback ); result = inb( port_base + Read_Loopback ); if (i != result) return 1; } return 0; } int fdomain_16x0_detect( Scsi_Host_Template *tpnt ) { int i, j; int flag = 0; int retcode; struct Scsi_Host *shpnt; #if DO_DETECT const int buflen = 255; Scsi_Cmnd SCinit; unsigned char do_inquiry[] = { INQUIRY, 0, 0, 0, buflen, 0 }; unsigned char do_request_sense[] = { REQUEST_SENSE, 0, 0, 0, buflen, 0 }; unsigned char do_read_capacity[] = { READ_CAPACITY, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned char buf[buflen]; #endif #if DEBUG_DETECT printk( "fdomain_16x0_detect()," ); #endif for (i = 0; !bios_base && i < ADDRESS_COUNT; i++) { #if DEBUG_DETECT printk( " %x(%x),", (unsigned)addresses[i], (unsigned)bios_base ); #endif for (j = 0; !bios_base && j < SIGNATURE_COUNT; j++) { if (!memcmp( ((char *)addresses[i] + signatures[j].sig_offset), signatures[j].signature, signatures[j].sig_length )) { bios_major = signatures[j].major_bios_version; bios_minor = signatures[j].minor_bios_version; PCI_bus = (signatures[j].flag == 1); Quantum = (signatures[j].flag > 1) ? signatures[j].flag : 0; bios_base = addresses[i]; } } } if (!bios_base) { #if DEBUG_DETECT printk( " FAILED: NO BIOS\n" ); #endif return 0; } if (bios_major == 2) { /* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM. Assuming the ROM is enabled (otherwise we wouldn't have been able to read the ROM signature :-), then the ROM sets up the RAM area with some magic numbers, such as a list of port base addresses and a list of the disk "geometry" reported to DOS (this geometry has nothing to do with physical geometry). */ switch (Quantum) { case 2: /* ISA_200S */ case 3: /* ISA_250MG */ port_base = *((char *)bios_base + 0x1fa2) + (*((char *)bios_base + 0x1fa3) << 8); break; case 4: /* ISA_200S (another one) */ port_base = *((char *)bios_base + 0x1fa3) + (*((char *)bios_base + 0x1fa4) << 8); break; default: port_base = *((char *)bios_base + 0x1fcc) + (*((char *)bios_base + 0x1fcd) << 8); break; } #if DEBUG_DETECT printk( " %x,", port_base ); #endif for (flag = 0, i = 0; !flag && i < PORT_COUNT; i++) { if (port_base == ports[i]) ++flag; } if (flag) flag = fdomain_is_valid_port( port_base ); } if (!flag) { /* Cannot get port base from BIOS RAM */ /* This is a bad sign. It usually means that someone patched the BIOS signature list (the signatures variable) to contain a BIOS signature for a board *OTHER THAN* the TMC-1660/TMC-1680. It also means that we don't have a Version 2.0 BIOS :-) */ #if DEBUG_DETECT if (bios_major != 2) printk( " RAM FAILED, " ); #endif /* Anyway, the alternative to finding the address in the RAM is to just search through every possible port address for one that is attached to the Future Domain card. Don't panic, though, about reading all these random port addresses -- there are rumors that the Future Domain BIOS does something very similar. Do not, however, check ports which the kernel knows are being used by another driver. */ if (!PCI_bus) { for (i = 0; !flag && i < PORT_COUNT; i++) { port_base = ports[i]; if (check_region( port_base, 0x10 )) { #if DEBUG_DETECT printk( " (%x inuse),", port_base ); #endif continue; } #if DEBUG_DETECT printk( " %x,", port_base ); #endif flag = fdomain_is_valid_port( port_base ); } } else { /* The proper way of doing this is to use ask the PCI bus for the device IRQ and interrupt level. Until the Linux kernel supports this sort of PCI bus query, we scan down a bunch of addresses (Future Domain tech support says we will probably find the address before we get to 0xf800). This works fine on some systems -- other systems may have to scan more addresses. If you have to modify this section for your installation, please send mail to faith@cs.unc.edu. */ for (i = 0xfff8; !flag && i > 0xe000; i -= 8) { port_base = i; if (check_region( port_base, 0x10 )) { #if DEBUG_DETECT printk( " (%x inuse)," , port_base ); #endif continue; } flag = fdomain_is_valid_port( port_base ); } } } if (!flag) { #if DEBUG_DETECT printk( " FAILED: NO PORT\n" ); #endif return 0; /* Cannot find valid set of ports */ } SCSI_Mode_Cntl_port = port_base + SCSI_Mode_Cntl; FIFO_Data_Count_port = port_base + FIFO_Data_Count; Interrupt_Cntl_port = port_base + Interrupt_Cntl; Interrupt_Status_port = port_base + Interrupt_Status; Read_FIFO_port = port_base + Read_FIFO; Read_SCSI_Data_port = port_base + Read_SCSI_Data; SCSI_Cntl_port = port_base + SCSI_Cntl; SCSI_Data_NoACK_port = port_base + SCSI_Data_NoACK; SCSI_Status_port = port_base + SCSI_Status; TMC_Cntl_port = port_base + TMC_Cntl; TMC_Status_port = port_base + TMC_Status; Write_FIFO_port = port_base + Write_FIFO; Write_SCSI_Data_port = port_base + Write_SCSI_Data; fdomain_16x0_reset( NULL ); if (fdomain_test_loopback()) { #if DEBUG_DETECT printk( "fdomain: LOOPBACK TEST FAILED, FAILING DETECT!\n" ); #endif return 0; } if ((bios_major == 3 && bios_minor >= 2) || bios_major < 0) { adapter_mask = 0x80; tpnt->this_id = 7; } /* Print out a banner here in case we can't get resources. */ shpnt = scsi_register( tpnt, 0 ); print_banner( shpnt ); /* Log IRQ with kernel */ if (!interrupt_level) { panic( "fdomain: *NO* interrupt level selected!\n" ); } else { /* Register the IRQ with the kernel */ retcode = request_irq( interrupt_level, fdomain_16x0_intr, SA_INTERRUPT, "fdomain" ); if (retcode < 0) { if (retcode == -EINVAL) { printk( "fdomain: IRQ %d is bad!\n", interrupt_level ); printk( " This shouldn't happen!\n" ); printk( " Send mail to faith@cs.unc.edu\n" ); } else if (retcode == -EBUSY) { printk( "fdomain: IRQ %d is already in use!\n", interrupt_level ); printk( " Please use another IRQ!\n" ); } else { printk( "fdomain: Error getting IRQ %d\n", interrupt_level ); printk( " This shouldn't happen!\n" ); printk( " Send mail to faith@cs.unc.edu\n" ); } panic( "fdomain: Driver requires interruptions\n" ); } } /* Log I/O ports with kernel */ request_region( port_base, 0x10, "fdomain" ); #if DO_DETECT /* These routines are here because of the way the SCSI bus behaves after a reset. This appropriate behavior was not handled correctly by the higher level SCSI routines when I first wrote this driver. Now, however, correct scan routines are part of scsi.c and these routines are no longer needed. However, this code is still good for debugging. */ SCinit.request_buffer = SCinit.buffer = buf; SCinit.request_bufflen = SCinit.bufflen = sizeof(buf)-1; SCinit.use_sg = 0; SCinit.lun = 0; printk( "fdomain: detection routine scanning for devices:\n" ); for (i = 0; i < 8; i++) { SCinit.target = i; if (i == tpnt->this_id) /* Skip host adapter */ continue; memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense)); retcode = fdomain_16x0_command(&SCinit); if (!retcode) { memcpy(SCinit.cmnd, do_inquiry, sizeof(do_inquiry)); retcode = fdomain_16x0_command(&SCinit); if (!retcode) { printk( " SCSI ID %d: ", i ); for (j = 8; j < (buf[4] < 32 ? buf[4] : 32); j++) printk( "%c", buf[j] >= 20 ? buf[j] : ' ' ); memcpy(SCinit.cmnd, do_read_capacity, sizeof(do_read_capacity)); retcode = fdomain_16x0_command(&SCinit); if (!retcode) { unsigned long blocks, size, capacity; blocks = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]; size = (buf[4] << 24) | (buf[5] << 16) | (buf[6] << 8) | buf[7]; capacity = +( +(blocks / 1024L) * +(size * 10L)) / 1024L; printk( "%lu MB (%lu byte blocks)", ((capacity + 5L) / 10L), size ); } else { memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense)); retcode = fdomain_16x0_command(&SCinit); } printk ("\n" ); } else { memcpy(SCinit.cmnd, do_request_sense, sizeof(do_request_sense)); retcode = fdomain_16x0_command(&SCinit); } } } #endif return 1; /* Maximum of one adapter will be detected. */ } const char *fdomain_16x0_info( struct Scsi_Host *ignore ) { static char buffer[80]; char *pt; strcpy( buffer, "Future Domain TMC-16x0 SCSI driver, version" ); if (strchr( VERSION, ':')) { /* Assume VERSION is an RCS Revision string */ strcat( buffer, strchr( VERSION, ':' ) + 1 ); pt = strrchr( buffer, '$') - 1; if (!pt) /* Stripped RCS Revision string? */ pt = buffer + strlen( buffer ) - 1; if (*pt != ' ') ++pt; *pt = '\0'; } else { /* Assume VERSION is a number */ strcat( buffer, " " VERSION ); } return buffer; } #if 0 static int fdomain_arbitrate( void ) { int status = 0; unsigned long timeout; #if EVERY_ACCESS printk( "fdomain_arbitrate()\n" ); #endif outb( 0x00, SCSI_Cntl_port ); /* Disable data drivers */ outb( adapter_mask, port_base + SCSI_Data_NoACK ); /* Set our id bit */ outb( 0x04 | PARITY_MASK, TMC_Cntl_port ); /* Start arbitration */ timeout = jiffies + 50; /* 500 mS */ while (jiffies < timeout) { status = inb( TMC_Status_port ); /* Read adapter status */ if (status & 0x02) /* Arbitration complete */ return 0; } /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS printk( "Arbitration failed, status = %x\n", status ); #endif #if ERRORS_ONLY printk( "fdomain: Arbitration failed, status = %x\n", status ); #endif return 1; } #endif static int fdomain_select( int target ) { int status; unsigned long timeout; static int flag = 0; outb( 0x82, SCSI_Cntl_port ); /* Bus Enable + Select */ outb( adapter_mask | (1 << target), SCSI_Data_NoACK_port ); /* Stop arbitration and enable parity */ outb( PARITY_MASK, TMC_Cntl_port ); timeout = jiffies + 35; /* 350mS -- because of timeouts (was 250mS) */ while (jiffies < timeout) { status = inb( SCSI_Status_port ); /* Read adapter status */ if (status & 1) { /* Busy asserted */ /* Enable SCSI Bus (on error, should make bus idle with 0) */ outb( 0x80, SCSI_Cntl_port ); return 0; } } /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS if (!target) printk( "Selection failed\n" ); #endif #if ERRORS_ONLY if (!target) { if (chip == tmc18c30 && !flag) /* Skip first failure for 18C30 chips. */ ++flag; else printk( "fdomain: Selection failed\n" ); } #endif return 1; } void my_done( int error ) { if (in_command) { in_command = 0; outb( 0x00, Interrupt_Cntl_port ); fdomain_make_bus_idle(); current_SC->result = error; if (current_SC->scsi_done) current_SC->scsi_done( current_SC ); else panic( "fdomain: current_SC->scsi_done() == NULL" ); } else { panic( "fdomain: my_done() called outside of command\n" ); } #if DEBUG_RACE in_interrupt_flag = 0; #endif } void fdomain_16x0_intr( int irq, struct pt_regs * regs ) { int status; int done = 0; unsigned data_count; /* The fdomain_16x0_intr is only called via the interrupt handler. The goal of the sti() here is to allow other interruptions while this routine is running. */ sti(); /* Yes, we really want sti() here */ outb( 0x00, Interrupt_Cntl_port ); /* We usually have one spurious interrupt after each command. Ignore it. */ if (!in_command || !current_SC) { /* Spurious interrupt */ #if EVERY_ACCESS printk( "Spurious interrupt, in_command = %d, current_SC = %x\n", in_command, current_SC ); #endif return; } /* Abort calls my_done, so we do nothing here. */ if (current_SC->SCp.phase & aborted) { #if DEBUG_ABORT printk( "Interrupt after abort, ignoring\n" ); #endif /* return; */ } #if DEBUG_RACE ++in_interrupt_flag; #endif if (current_SC->SCp.phase & in_arbitration) { status = inb( TMC_Status_port ); /* Read adapter status */ if (!(status & 0x02)) { #if EVERY_ACCESS printk( " AFAIL " ); #endif my_done( DID_BUS_BUSY << 16 ); return; } current_SC->SCp.phase = in_selection; outb( 0x40 | FIFO_COUNT, Interrupt_Cntl_port ); outb( 0x82, SCSI_Cntl_port ); /* Bus Enable + Select */ outb( adapter_mask | (1 << current_SC->target), SCSI_Data_NoACK_port ); /* Stop arbitration and enable parity */ outb( 0x10 | PARITY_MASK, TMC_Cntl_port ); #if DEBUG_RACE in_interrupt_flag = 0; #endif return; } else if (current_SC->SCp.phase & in_selection) { status = inb( SCSI_Status_port ); if (!(status & 0x01)) { /* Try again, for slow devices */ if (fdomain_select( current_SC->target )) { #if EVERY_ACCESS printk( " SFAIL " ); #endif my_done( DID_NO_CONNECT << 16 ); return; } else { #if EVERY_ACCESS printk( " AltSel " ); #endif /* Stop arbitration and enable parity */ outb( 0x10 | PARITY_MASK, TMC_Cntl_port ); } } current_SC->SCp.phase = in_other; outb( 0x90 | FIFO_COUNT, Interrupt_Cntl_port ); outb( 0x80, SCSI_Cntl_port ); #if DEBUG_RACE in_interrupt_flag = 0; #endif return; } /* current_SC->SCp.phase == in_other: this is the body of the routine */ status = inb( SCSI_Status_port ); if (status & 0x10) { /* REQ */ switch (status & 0x0e) { case 0x08: /* COMMAND OUT */ outb( current_SC->cmnd[current_SC->SCp.sent_command++], Write_SCSI_Data_port ); #if EVERY_ACCESS printk( "CMD = %x,", current_SC->cmnd[ current_SC->SCp.sent_command - 1] ); #endif break; case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = -1; outb( 0xd0 | PARITY_MASK, TMC_Cntl_port ); } break; case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = 1; outb( 0x90 | PARITY_MASK, TMC_Cntl_port ); } break; case 0x0c: /* STATUS IN */ current_SC->SCp.Status = inb( Read_SCSI_Data_port ); #if EVERY_ACCESS printk( "Status = %x, ", current_SC->SCp.Status ); #endif #if ERRORS_ONLY if (current_SC->SCp.Status && current_SC->SCp.Status != 2) { printk( "fdomain: target = %d, command = %x, status = %x\n", current_SC->target, current_SC->cmnd[0], current_SC->SCp.Status ); } #endif break; case 0x0a: /* MESSAGE OUT */ outb( MESSAGE_REJECT, Write_SCSI_Data_port ); /* Reject */ break; case 0x0e: /* MESSAGE IN */ current_SC->SCp.Message = inb( Read_SCSI_Data_port ); #if EVERY_ACCESS printk( "Message = %x, ", current_SC->SCp.Message ); #endif if (!current_SC->SCp.Message) ++done; #if DEBUG_MESSAGES || EVERY_ACCESS if (current_SC->SCp.Message) { printk( "fdomain: message = %x\n", current_SC->SCp.Message ); } #endif break; } } if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) { /* We have to get the FIFO direction correct, so I've made a table based on the SCSI Standard of which commands appear to require a DATA OUT phase. */ /* p. 94: Command for all device types CHANGE DEFINITION 40 DATA OUT COMPARE 39 DATA OUT COPY 18 DATA OUT COPY AND VERIFY 3a DATA OUT INQUIRY 12 LOG SELECT 4c DATA OUT LOG SENSE 4d MODE SELECT (6) 15 DATA OUT MODE SELECT (10) 55 DATA OUT MODE SENSE (6) 1a MODE SENSE (10) 5a READ BUFFER 3c RECEIVE DIAGNOSTIC RESULTS 1c REQUEST SENSE 03 SEND DIAGNOSTIC 1d DATA OUT TEST UNIT READY 00 WRITE BUFFER 3b DATA OUT p.178: Commands for direct-access devices (not listed on p. 94) FORMAT UNIT 04 DATA OUT LOCK-UNLOCK CACHE 36 PRE-FETCH 34 PREVENT-ALLOW MEDIUM REMOVAL 1e READ (6)/RECEIVE 08 READ (10) 3c READ CAPACITY 25 READ DEFECT DATA (10) 37 READ LONG 3e REASSIGN BLOCKS 07 DATA OUT RELEASE 17 RESERVE 16 DATA OUT REZERO UNIT/REWIND 01 SEARCH DATA EQUAL (10) 31 DATA OUT SEARCH DATA HIGH (10) 30 DATA OUT SEARCH DATA LOW (10) 32 DATA OUT SEEK (6) 0b SEEK (10) 2b SET LIMITS (10) 33 START STOP UNIT 1b SYNCHRONIZE CACHE 35 VERIFY (10) 2f WRITE (6)/PRINT/SEND 0a DATA OUT WRITE (10)/SEND 2a DATA OUT WRITE AND VERIFY (10) 2e DATA OUT WRITE LONG 3f DATA OUT WRITE SAME 41 DATA OUT ? p. 261: Commands for sequential-access devices (not previously listed) ERASE 19 LOAD UNLOAD 1b LOCATE 2b READ BLOCK LIMITS 05 READ POSITION 34 READ REVERSE 0f RECOVER BUFFERED DATA 14 SPACE 11 WRITE FILEMARKS 10 ? p. 298: Commands for printer devices (not previously listed) ****** NOT SUPPORTED BY THIS DRIVER, since 0b is SEEK (6) ***** SLEW AND PRINT 0b DATA OUT -- same as seek STOP PRINT 1b SYNCHRONIZE BUFFER 10 p. 315: Commands for processor devices (not previously listed) p. 321: Commands for write-once devices (not previously listed) MEDIUM SCAN 38 READ (12) a8 SEARCH DATA EQUAL (12) b1 DATA OUT SEARCH DATA HIGH (12) b0 DATA OUT SEARCH DATA LOW (12) b2 DATA OUT SET LIMITS (12) b3 VERIFY (12) af WRITE (12) aa DATA OUT WRITE AND VERIFY (12) ae DATA OUT p. 332: Commands for CD-ROM devices (not previously listed) PAUSE/RESUME 4b PLAY AUDIO (10) 45 PLAY AUDIO (12) a5 PLAY AUDIO MSF 47 PLAY TRACK RELATIVE (10) 49 PLAY TRACK RELATIVE (12) a9 READ HEADER 44 READ SUB-CHANNEL 42 READ TOC 43 p. 370: Commands for scanner devices (not previously listed) GET DATA BUFFER STATUS 34 GET WINDOW 25 OBJECT POSITION 31 SCAN 1b SET WINDOW 24 DATA OUT p. 391: Commands for optical memory devices (not listed) ERASE (10) 2c ERASE (12) ac MEDIUM SCAN 38 DATA OUT READ DEFECT DATA (12) b7 READ GENERATION 29 READ UPDATED BLOCK 2d UPDATE BLOCK 3d DATA OUT p. 419: Commands for medium changer devices (not listed) EXCHANGE MEDIUM 46 INITIALIZE ELEMENT STATUS 07 MOVE MEDIUM a5 POSITION TO ELEMENT 2b READ ELEMENT STATUS b8 REQUEST VOL. ELEMENT ADDRESS b5 SEND VOLUME TAG b6 DATA OUT p. 454: Commands for communications devices (not listed previously) GET MESSAGE (6) 08 GET MESSAGE (10) 28 GET MESSAGE (12) a8 */ switch (current_SC->cmnd[0]) { case CHANGE_DEFINITION: case COMPARE: case COPY: case COPY_VERIFY: case LOG_SELECT: case MODE_SELECT: case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER: case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case WRITE_6: case WRITE_10: case WRITE_VERIFY: case 0x3f: case 0x41: case 0xb1: case 0xb0: case 0xb2: case 0xaa: case 0xae: case 0x24: case 0x38: case 0x3d: case 0xb6: case 0xea: /* alternate number for WRITE LONG */ current_SC->SCp.have_data_in = -1; outb( 0xd0 | PARITY_MASK, TMC_Cntl_port ); break; case 0x00: default: current_SC->SCp.have_data_in = 1; outb( 0x90 | PARITY_MASK, TMC_Cntl_port ); break; } } if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */ while ( (data_count = FIFO_Size - inw( FIFO_Data_Count_port )) > 512 ) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ) ; #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count > 0) { #if EVERY_ACCESS printk( "%d OUT, ", data_count ); #endif if (data_count == 1) { outb( *current_SC->SCp.ptr++, Write_FIFO_port ); --current_SC->SCp.this_residual; } else { data_count >>= 1; outsw( Write_FIFO_port, current_SC->SCp.ptr, data_count ); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual) { if (current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = current_SC->SCp.buffer->address; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } else break; } } } if (current_SC->SCp.have_data_in == 1) { /* DATA IN */ while ((data_count = inw( FIFO_Data_Count_port )) > 0) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ); #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count) { #if EVERY_ACCESS printk( "%d IN, ", data_count ); #endif if (data_count == 1) { *current_SC->SCp.ptr++ = inb( Read_FIFO_port ); --current_SC->SCp.this_residual; } else { data_count >>= 1; /* Number of words */ insw( Read_FIFO_port, current_SC->SCp.ptr, data_count ); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = current_SC->SCp.buffer->address; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } } } if (done) { #if EVERY_ACCESS printk( " ** IN DONE %d ** ", current_SC->SCp.have_data_in ); #endif #if ERRORS_ONLY if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) { if ((unsigned char)(*((char *)current_SC->request_buffer+2)) & 0x0f) { unsigned char key; unsigned char code; unsigned char qualifier; key = (unsigned char)(*((char *)current_SC->request_buffer + 2)) & 0x0f; code = (unsigned char)(*((char *)current_SC->request_buffer + 12)); qualifier = (unsigned char)(*((char *)current_SC->request_buffer + 13)); if (!(key == UNIT_ATTENTION && (code == 0x29 || !code)) && !(key == NOT_READY && code == 0x04 && (!qualifier || qualifier == 0x02 || qualifier == 0x01)) && !(key == ILLEGAL_REQUEST && (code == 0x25 || code == 0x24 || !code))) printk( "fdomain: REQUEST SENSE " "Key = %x, Code = %x, Qualifier = %x\n", key, code, qualifier ); } } #endif #if EVERY_ACCESS printk( "BEFORE MY_DONE. . ." ); #endif my_done( (current_SC->SCp.Status & 0xff) | ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16) ); #if EVERY_ACCESS printk( "RETURNING.\n" ); #endif } else { if (current_SC->SCp.phase & disconnect) { outb( 0xd0 | FIFO_COUNT, Interrupt_Cntl_port ); outb( 0x00, SCSI_Cntl_port ); } else { outb( 0x90 | FIFO_COUNT, Interrupt_Cntl_port ); } } #if DEBUG_RACE in_interrupt_flag = 0; #endif return; } int fdomain_16x0_queue( Scsi_Cmnd * SCpnt, void (*done)(Scsi_Cmnd *)) { if (in_command) { panic( "fdomain: fdomain_16x0_queue() NOT REENTRANT!\n" ); } #if EVERY_ACCESS printk( "queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->target, *(unsigned char *)SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen ); #endif fdomain_make_bus_idle(); current_SC = SCpnt; /* Save this for the done function */ current_SC->scsi_done = done; /* Initialize static data */ if (current_SC->use_sg) { current_SC->SCp.buffer = (struct scatterlist *)current_SC->request_buffer; current_SC->SCp.ptr = current_SC->SCp.buffer->address; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; current_SC->SCp.buffers_residual = current_SC->use_sg - 1; } else { current_SC->SCp.ptr = (char *)current_SC->request_buffer; current_SC->SCp.this_residual = current_SC->request_bufflen; current_SC->SCp.buffer = NULL; current_SC->SCp.buffers_residual = 0; } current_SC->SCp.Status = 0; current_SC->SCp.Message = 0; current_SC->SCp.have_data_in = 0; current_SC->SCp.sent_command = 0; current_SC->SCp.phase = in_arbitration; /* Start arbitration */ outb( 0x00, Interrupt_Cntl_port ); outb( 0x00, SCSI_Cntl_port ); /* Disable data drivers */ outb( adapter_mask, SCSI_Data_NoACK_port ); /* Set our id bit */ ++in_command; outb( 0x20, Interrupt_Cntl_port ); outb( 0x14 | PARITY_MASK, TMC_Cntl_port ); /* Start arbitration */ return 0; } /* The following code, which simulates the old-style command function, was taken from Tommy Thorn's aha1542.c file. This code is Copyright (C) 1992 Tommy Thorn. */ static volatile int internal_done_flag = 0; static volatile int internal_done_errcode = 0; static void internal_done( Scsi_Cmnd *SCpnt ) { internal_done_errcode = SCpnt->result; ++internal_done_flag; } int fdomain_16x0_command( Scsi_Cmnd *SCpnt ) { fdomain_16x0_queue( SCpnt, internal_done ); while (!internal_done_flag) ; internal_done_flag = 0; return internal_done_errcode; } /* End of code derived from Tommy Thorn's work. */ void print_info( Scsi_Cmnd *SCpnt ) { unsigned int imr; unsigned int irr; unsigned int isr; if (!SCpnt || !SCpnt->host) { printk( "fdomain: cannot provide detailed information\n" ); } printk( "%s\n", fdomain_16x0_info( SCpnt->host ) ); print_banner( SCpnt->host ); switch (SCpnt->SCp.phase) { case in_arbitration: printk( "arbitration " ); break; case in_selection: printk( "selection " ); break; case in_other: printk( "other " ); break; default: printk( "unknown " ); break; } printk( "(%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->SCp.phase, SCpnt->target, *(unsigned char *)SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen ); printk( "sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout ); #if DEBUG_RACE printk( "in_interrupt_flag = %d\n", in_interrupt_flag ); #endif imr = (inb( 0x0a1 ) << 8) + inb( 0x21 ); outb( 0x0a, 0xa0 ); irr = inb( 0xa0 ) << 8; outb( 0x0a, 0x20 ); irr += inb( 0x20 ); outb( 0x0b, 0xa0 ); isr = inb( 0xa0 ) << 8; outb( 0x0b, 0x20 ); isr += inb( 0x20 ); /* Print out interesting information */ printk( "IMR = 0x%04x", imr ); if (imr & (1 << interrupt_level)) printk( " (masked)" ); printk( ", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr ); printk( "SCSI Status = 0x%02x\n", inb( SCSI_Status_port ) ); printk( "TMC Status = 0x%02x", inb( TMC_Status_port ) ); if (inb( TMC_Status_port & 1)) printk( " (interrupt)" ); printk( "\n" ); printk( "Interrupt Status = 0x%02x", inb( Interrupt_Status_port ) ); if (inb( Interrupt_Status_port ) & 0x08) printk( " (enabled)" ); printk( "\n" ); if (chip == tmc18c50 || chip == tmc18c30) { printk( "FIFO Status = 0x%02x\n", inb( port_base + FIFO_Status ) ); printk( "Int. Condition = 0x%02x\n", inb( port_base + Interrupt_Cond ) ); } printk( "Configuration 1 = 0x%02x\n", inb( port_base + Configuration1 ) ); if (chip == tmc18c50 || chip == tmc18c30) printk( "Configuration 2 = 0x%02x\n", inb( port_base + Configuration2 ) ); } int fdomain_16x0_abort( Scsi_Cmnd *SCpnt) { unsigned long flags; #if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT printk( "fdomain: abort " ); #endif save_flags( flags ); cli(); if (!in_command) { #if EVERY_ACCESS || ERRORS_ONLY printk( " (not in command)\n" ); #endif restore_flags( flags ); return SCSI_ABORT_NOT_RUNNING; } #if DEBUG_ABORT print_info( SCpnt ); #endif fdomain_make_bus_idle(); current_SC->SCp.phase |= aborted; current_SC->result = DID_ABORT << 16; restore_flags( flags ); /* Aborts are not done well. . . */ my_done( DID_ABORT << 16 ); return SCSI_ABORT_SUCCESS; } int fdomain_16x0_reset( Scsi_Cmnd *SCpnt ) { #if DEBUG_RESET static int called_once = 0; #endif #if ERRORS_ONLY if (SCpnt) printk( "fdomain: SCSI Bus Reset\n" ); #endif #if DEBUG_RESET if (called_once) print_info( current_SC ); called_once = 1; #endif outb( 1, SCSI_Cntl_port ); do_pause( 2 ); outb( 0, SCSI_Cntl_port ); do_pause( 115 ); outb( 0, SCSI_Mode_Cntl_port ); outb( PARITY_MASK, TMC_Cntl_port ); /* Unless this is the very first call (i.e., SCPnt == NULL), everything is probably hosed at this point. We will, however, try to keep things going by informing the high-level code that we need help. */ return SCSI_RESET_WAKEUP; } #include "sd.h" #include "scsi_ioctl.h" int fdomain_16x0_biosparam( Scsi_Disk *disk, int dev, int *info_array ) { int drive; unsigned char buf[512 + sizeof( int ) * 2]; int size = disk->capacity; int *sizes = (int *)buf; unsigned char *data = (unsigned char *)(sizes + 2); unsigned char do_read[] = { READ_6, 0, 0, 0, 1, 0 }; int retcode; struct drive_info { unsigned short cylinders; unsigned char heads; unsigned char sectors; } *i; /* NOTES: The RAM area starts at 0x1f00 from the bios_base address. For BIOS Version 2.0: The drive parameter table seems to start at 0x1f30. The first byte's purpose is not known. Next is the cylinder, head, and sector information. The last 4 bytes appear to be the drive's size in sectors. The other bytes in the drive parameter table are unknown. If anyone figures them out, please send me mail, and I will update these notes. Tape drives do not get placed in this table. There is another table at 0x1fea: If the byte is 0x01, then the SCSI ID is not in use. If the byte is 0x18 or 0x48, then the SCSI ID is in use, although tapes don't seem to be in this table. I haven't seen any other numbers (in a limited sample). 0x1f2d is a drive count (i.e., not including tapes) The table at 0x1fcc are I/O ports addresses for the various operations. I calculate these by hand in this driver code. For the ISA-200S version of BIOS Version 2.0: The drive parameter table starts at 0x1f33. WARNING: Assume that the table entry is 25 bytes long. Someone needs to check this for the Quantum ISA-200S card. For BIOS Version 3.2: The drive parameter table starts at 0x1f70. Each entry is 0x0a bytes long. Heads are one less than we need to report. */ drive = MINOR(dev) / 16; if (bios_major == 2) { switch (Quantum) { case 2: /* ISA_200S */ /* The value of 25 has never been verified. It should probably be 15. */ i = (struct drive_info *)( (char *)bios_base + 0x1f33 + drive * 25 ); break; case 3: /* ISA_250MG */ i = (struct drive_info *)( (char *)bios_base + 0x1f36 + drive * 15 ); break; case 4: /* ISA_200S (another one) */ i = (struct drive_info *)( (char *)bios_base + 0x1f34 + drive * 15 ); break; default: i = (struct drive_info *)( (char *)bios_base + 0x1f31 + drive * 25 ); break; } info_array[0] = i->heads; info_array[1] = i->sectors; info_array[2] = i->cylinders; } else if (bios_major == 3 && bios_minor >= 0 && bios_minor < 4) { /* 3.0 and 3.2 BIOS */ i = (struct drive_info *)( (char *)bios_base + 0x1f71 + drive * 10 ); info_array[0] = i->heads + 1; info_array[1] = i->sectors; info_array[2] = i->cylinders; } else { /* 3.4 BIOS (and up?) */ /* This algorithm was provided by Future Domain (much thanks!). */ sizes[0] = 0; /* zero bytes out */ sizes[1] = 512; /* one sector in */ memcpy( data, do_read, sizeof( do_read ) ); retcode = kernel_scsi_ioctl( disk->device, SCSI_IOCTL_SEND_COMMAND, (void *)buf ); if (!retcode /* SCSI command ok */ && data[511] == 0xaa && data[510] == 0x55 /* Partition table valid */ && data[0x1c2]) { /* Partition type */ /* The partition table layout is as follows: Start: 0x1b3h Offset: 0 = partition status 1 = starting head 2 = starting sector and cylinder (word, encoded) 4 = partition type 5 = ending head 6 = ending sector and cylinder (word, encoded) 8 = starting absolute sector (double word) c = number of sectors (double word) Signature: 0x1fe = 0x55aa So, this algorithm assumes: 1) the first partition table is in use, 2) the data in the first entry is correct, and 3) partitions never divide cylinders Note that (1) may be FALSE for NetBSD (and other BSD flavors), as well as for Linux. Note also, that Linux doesn't pay any attention to the fields that are used by this algorithm -- it only uses the absolute sector data. Recent versions of Linux's fdisk(1) will fill this data in correctly, and forthcoming versions will check for consistency. Checking for a non-zero partition type is not part of the Future Domain algorithm, but it seemed to be a reasonable thing to do, especially in the Linux and BSD worlds. */ info_array[0] = data[0x1c3] + 1; /* heads */ info_array[1] = data[0x1c4] & 0x3f; /* sectors */ } else { /* Note that this new method guarantees that there will always be less than 1024 cylinders on a platter. This is good for drives up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */ if ((unsigned int)size >= 0x7e0000U) { info_array[0] = 0xff; /* heads = 255 */ info_array[1] = 0x3f; /* sectors = 63 */ } else if ((unsigned int)size >= 0x200000U) { info_array[0] = 0x80; /* heads = 128 */ info_array[1] = 0x3f; /* sectors = 63 */ } else { info_array[0] = 0x40; /* heads = 64 */ info_array[1] = 0x20; /* sectors = 32 */ } } /* For both methods, compute the cylinders */ info_array[2] = (unsigned int)size / (info_array[0] * info_array[1] ); } return 0; }