/* floating point Bessel's function of the first and second kinds and of integer order. int n; double x; jn(n,x); returns the value of Jn(x) for all integer values of n and all real values of x. There are no error returns. Calls j0l, j1l. For n=0, j0l(x) is called, for n=1, j1l(x) is called, for nx, a continued fraction approximation to j(n,x)/j(n-1,x) is evaluated and then backward recursion is used starting from a supposed value for j(n,x). The resulting value of j(0,x) is compared with the actual value to correct the supposed value of j(n,x). yn(n,x) is similar in all respects, except that forward recursion is used for all values of n>1. */ #include "mathl.h" /* long double j0l(), j1l(), y0l(), y1l(); */ long double jnl(int n, long double x) { int i, sign; long double a, b, temp; long double xsq, t; /* n J (x) = (-1) J (x) -n n n J (-x) = (-1) J (x) n n */ sign = 1; if(n<0){ n = -n; if( n & 1 ) sign = -1; } if( x < 0.0L ) { if( n & 1 ) sign = -sign; x = -x; } if(n==0) return(j0l(x)); if(n==1) return(sign*j1l(x)); if(x == 0.L) return(0.L); if(n>x) goto recurs; a = j0l(x); b = j1l(x); for(i=1;in;i--){ t = xsq/(2.L*i - t); } t = x/(2.L*n-t); a = t; b = 1; for(i=n-1;i>0;i--){ temp = b; b = (2.L*i/x)*b - a; a = temp; } return(sign*t*j0l(x)/b); } long double ynl(int n, long double x) { int i; int sign; long double a, b, temp; if (x <= 0) { return(-1.189731495357231765021263853E4932L); } sign = 1; if(n<0){ n = -n; if(n%2 == 1) sign = -1; } if(n==0) return(y0l(x)); if(n==1) return(sign*y1l(x)); a = y0l(x); b = y1l(x); for(i=1;i